Categories
Lifestyle Productivity

Tracking and Loss Aversion

“What gets measured gets managed.”

Peter Drucker (1909 – 2005)

This quote is probably one of the most life changing ideas I’ve come across this year. I like to add “…and what gets managed gets improved, as long as you’re aiming up” to the end of it to give it that extra punch. The idea is pretty simple, we’re able to manage the things we pay the most attention to and we can manage to improve them with a little intentionality.

If we’re trying to lose weight, we’ll need a way to determine if we’re making progress. Most people use weight, but we can use an indefinite amount of different measures. We can measure our BMI, arm width, torso width, torso circumference, daily energy levels, etc. Once we pick a measure, we track the measure over time and we can see if we’re moving towards our goals or away from our goals. In The 4-Hour Body by Tim Ferriss (which is on my Must Read Book List), Tim suggests that people measure as many variables as possible when they are trying to make new changes to their fitness routine so they can see potential progress in domains they may not be focusing on. This prevents us from quitting if we aren’t meeting the goals we set for ourselves. For example, if we spend a week doing kettlebell swings and we don’t lose any weight but we’re able to increase our maximum number of reps, then we aren’t totally wiped out from the failure. The progress in the other domain gives us the boost we need to stick with it. As long as we’re getting better, it’s all good.

The best part of measuring multiple variables is being able to improve them intentionally. I’ve noticed this in my own life, anything that I keep track of inevitability gets improved over time. This is partly because I’m (possibly unhealthily) obsessed with personal development but also because I know my metrics and where I objectively stand.

Tracking

Man will only get better when you make him see what he is like.

Anton Chekhov (1860 – 1904)

We can think of tracking as our ability to notice when we’re on path towards our ideal life so we can use it to stay on the path towards our goals. It’s helpful to see tracking as a skill that we practice, but it’s much more than that. Our ability to track is deep-seated in our biology. We have connections in our limbic system wired throughout our entire body which entangles our emotional states with the trajectory of our desired goal. We have visceral feelings when we suspect something may physically harm us or feelings of unease when we’re doing something we know we shouldn’t. These deeply ingrained systems are examples of our tracking mechanisms letting us know where we stand in relation to our goals.

A relatable example of tracking mechanisms controlling our emotional states is being hungry. When we’re hungry, our entire body’s mission becomes “get food.” All of our senses become hyper aware of everything food related and we become perspective of all the possible ways of getting food. Our whole body is oriented towards getting the goal: food. This happens all the time when I’m hungry and I drive by an In-N-Out. I’m minding my own business, when BAM! I’m hit with the sweet aroma of burgers and fries. Now, imagine you’re hungry decide to go drive to your favorite restaurant. You get a flat tire on the drive and it’s going to take a while to get it fixed. Something came up that stopped you from reaching the goal. That bag of negative emotion you feel when an obstruction comes up is your tracking mechanism saying “You are off course!” or “Something is stopping you from reaching your goal!” Now, imagine you fixed the tired and made it to the restaurant and you see your hot meal coming out of the kitchen headed towards you. As the food gets closer and closer, your brain releases a bigger and bigger dopamine kick. These kicks also strengthen actions committed right before that point making them more likely to occur in the future. The same phenomena happens with all of our goals. We experience positive emotion when we move towards our goals and we experience negative emotion when we are impeded or off course from our goals. The feelings are experienced proportionally less intense as the goals become less crucial to our survival.

Tracking works best when we have a clear purpose. Tracking doesn’t discern what is a proper purpose and what is an inauthentic purpose, so we decide what we dedicate ourselves to, and tracking can be one of the many tools we can use. It provides powerful motivation and a built-in incentive structure. Some people like to track for shiggles, but I like to track with a specific goal in mind because seeing ourselves move towards a goal makes us happy, staves off depression and anxiety, and boosts confidence.

I mentioned this earlier but it’s so important to track multiple variables. In a classroom, only measuring our overall grade in the class may be discouraging since it doesn’t change as quickly as we’d like. It usually takes week of consistent improvement to raise an overall grade in a course, especially towards the end. But if we measure the number of questions we can answer easily in our a certain class, then we may see improvements faster.

Tracking multiple dimensions gives us boosts when we see improvement and prevents disappointment because we won’t trick ourselves into thinking that we’re stagnant. The more things you keep track of, the more things will improve, and the more you’ll be able to see how you’re progressing in a comprehensive way. When we are working on ourselves, there is always going to be some improvement in some dimension but it’s easy to miss those marks. Tracking is a way for us to see some of the different things that are improving. Keep track of many things, the more specific the better.

Loss Aversion

I like to think of Loss Aversion as an internal mechanism which motivates us to act to prevent losing something. Some examples of this could be going to work to pay the bills in order to avoid the water being shut off or studying for a test in order to avoid getting a bad grade. Loss aversion can also help us stay on the path towards our goals because it gives us something to run from. Research from Center for Experimental Social Science at NYU demonstrates that people will work way harder to avoid losing $5 than earn $20. Tracking and Loss Aversion are both powerful motivators but Loss Aversion is more effective. Not surprising considering that most people are more sensitive to negative stimuli than positive stimuli.

Everyone loves to envision themselves at the top of the mountain, so to speak, looking down at the world from their throne of success. That kind of envisioning is using the Tracking mechanism to create a possible future that we would love to run towards. But I believe that knowing what you want to do and where you want to go is not enough to accomplish something great. It is just as important to know what will happen if you do not take the actions necessary. If you don’t feeling like studying, ask yourself “What will happen if I don’t study?” Be vivid. The more clear the scenario of disaster, the better. I get myself to work out, stick to my routines, and create on a regular basis by asking myself:

What would my life would be like if I didn’t do this?

If keeping your own vision doesn’t work, there are fun apps to monitor loss aversion, feel free to google them and pick one that’s best for you. There are also organizations called Anti-Charities. You pledge money to these organizations and they will donate the money under your name if you don’t accomplish your goals. An example would be something like: Donating $5 to the KKK every day that you don’t study for an exam.

As much as I wish we could all just track down our goals like my dog when we wants to eat, success is extremely rare when we track without loss aversion. Trust me, I’ve avoided loss aversion intentionally for years but when I carefully reflected on a majority of my achievements I noticed that what really got the job done was the fear of getting the stick if I didn’t hold up my end of the deal.

Create something to run to and create something to run from. It will be pretty hard to procrastinate or do meaningless work if you are clear on what you want and what you do not.

Run towards Heaven and away from Hell. Nowadays, I hear so much contention between positive reinforcement and positive punishment. Some people say we should only use positive reinforcement and avoid positive punishment but I say we should use a combination of both. Run towards the carrot and away from the stick. Usually just one good reason isn’t enough, most of the time we’ll need more than one. Combining Tracking with Loss Aversion gives us at least two good reasons to do the things we want and it’s a surefire way to success.

Categories
Education

The Brain vs. The Mind (Part 1)

“Biology gives you a brain. Life turns it into a mind.”

Jeffrey Eugenides (1960 – )

We use both the brain and the mind to perceive the world around us and decide the best course of action. The brain is an organ and, in some respects, isn’t just in our heads. It’s spread throughout our entire body expressed in our central and peripheral nervous system. The central nervous system is essentially our spinal cord and what we traditionally consider the brain. The peripheral nervous system spreads out to our fingers and toes as our afferent and efferent nerves.

The mind is a completely different story. The mind isn’t tangible but, in some ways, can be more real than our brains. The mind is our cognitive functions which interpret and interact with the world around us. We usually consider our consciousness and thoughts as originating from the mind and because of this we like to think of the mind as “in the brain” but really the mind is an abstract idea. Our minds shape our reality and are responsible for our creativity and imagination.

There are known connections between the brain and the mind, which are easily demonstrated in drug use. But what I’m most interested in learning is how the brain functions physically, learning how the mind functions metaphysically, and maximizing their innate behavior to bring out optimal results.

The Brain

The brain is made up of 100 billion of neurons, nerve cells, that all work together to run our entire body. Neurons communicate with each other by sending neurotransmitters, electrical and chemical signals, through the spaces in between each neuron, synapses. These connections of neurons and synapses creates neurological pathways in our brain. Different neurological pathways do different things and our brain has a unique pathway for every single thing we think and do. Neurological pathways are a bunch of neurons that communicate through electrical impulses. It’s useful to know that these pathways strengthen every time they are fired. This gives the brain a unique ability to change and adapt based on what it thinks it needs to survive, this is known as brain plasticity. The brain is constantly morphing and changing, which is exciting because it shows that it’s never too late to learn anything. Learning doesn’t stop when someone gets older or gets “set in their ways.” Learning only stops when we decide it stops. However, like all organs in the body, the brain is something that requires energy and maintenance to function effectively.

In order to understand how to take care of our brains and use them more effectively, it’s helpful to know a little anatomy. This is not an exhaustive nervous system anatomy section – just some general knowledge and the parts that I’ve found relevant to learning:

3 Major Parts of the Brain

Thanks hopkinsmedicine.org

Cerebrum

This is the part in charge of performing higher order functions like interpreting our senses, developing and deciphering speech, reasoning, emotional regulation, learning, and fine motor skills. This is the youngest part of our nervous system.

Cerebellum 

This part of the brain receives sensory information, coordinates voluntary muscle movements, maintains posture, and regulates balance. This evolved after the brainstem but before the cerebrum.

Brainstem

This is part connects the rest of the brain to the spinal cord. It’s in charge of many automatic functions. This includes but is not limited to respirations, heart rate, temperature, circadian rhythms, digestion, sneezing, and sweating. This is the oldest part of our nervous system.

Left Brain vs. Right Brain

We’ve all heard the common saying – left brain people are more analytical and right brain people are creative. This never really sat well with me because I’ve always felt like I could be a left brain person and a right brain person. I’m logical and extremely analytical but I’m also creative and artistic, where did I fit into this whole left brain right brain debate? Turns out, I didn’t have to pick a side! Everyone uses both hemispheres of their brains all the time. They’re just used for different things.

In Jordan Peterson’s Maps of Meaning lecture series, he outlines (in extensive detail) how human beings interpret the world and derive value structures from that information. In the eighth video of the 2017 series he presents this image and I believe it’s a much better representation of the functions of the left and right hemispheres.

Maps of Meaning – Jordan Peterson (2017)

We use the left hemisphere to operate in places that we understand, it’s the part of the brain that gives us our positive emotion when the world around us aligns with what we expect or want. In the context of learning, our left hemisphere is what we’re using what we already know the answers. When students feel like what they’re working on is easy and within their realm of understanding, then they’re primarily using their left hemisphere.

On the flip side, we use the right hemisphere to operate in unknown territory, it’s the part of the brain that tells us what to do when we don’t know what to do. When it comes to learning, our right hemisphere is what’s going crazy when we’re trying to learn something new. When students feel like what they’re working on is scary, confusing, or too challenging, then they’re primarily using their right hemisphere.

Each hemisphere has a separate consciousness and they don’t communicate with each other as much as we’d think. They are seperated and communicate through the corpus callosum. It’s almost like each hemisphere makes their own interpretation and we just kind of roll with it. We see this in people with prosopagnosia, the loss of the ability of recognize faces.

Take the Weirwood tree from Game of Thrones for example. There’s curves in the tree that indicate facial information but it’s still a tree. One half of the brain interprets the visual stimuli as a face while the other interprets the information as a tree. We use both of these perspectives to understand reality but someone with prosopagnosia would see only the tree.

Ned & Catelyn Stark discussing duty

I believe our two hemisphere brain is an amazing demonstration of intelligent design. It’s extremely useful to have our control center, so to speak, ran by two systems. If one side goes down, then the whole thing doesn’t have to shut down. We see this happen in people who have strokes. If someone experiences a CVA (cerebrovascular accident), a.k.a. a stroke, they may experience some brain damage but because we have two hemispheres, people usually lose function of only one side of their body, rather than their whole body.

The Lobes of the Brain

The Cerebrum can be further divided into four different sections referred to as lobes.

Frontal Lobe

This is what’s in charge of our personalities, behaviors, and emotions. The frontal lobe is responsible for planning, problem solving, and judging and is where the majority of our executive and higher level functioning takes place. Cognitive phenomena such as concentration and self awareness are functions of the frontal lobe which helps makes us smart and also helps us move towards our goals. The Broca’s area, which is in charge of speaking and writing, sits inside the frontal lobe as well as the motor strip for voluntary body movement.

The frontal lobe also contains the prefrontal cortex, which is the part of the brain which is involved with planning complex cognitive behavior, personality expression, decision making, and moderating social behavior. It’s basically the part of the brain that’s physically responsible for our will power and ability to regulate the more animalistic and impulsive parts of ourselves. Someone with a strong prefrontal cortex is more able to do what they tell themselves to do.

Parietal Lobe

The parietal lobe sits on the top part of our brains and is sort of the sensory processing center of the cerebrum. The parietal lobe is in charge of interpreting language as well as tactile, thermal, visual, auditory, and other sensory stimuli. It also manages spatial and visual perception.

Occipital Lobe

The occipital lobe is at the back of our head and is the primary visual processing center. It interprets visual stimuli in three different ways – color, light intensity, and movement.

Temporal Lobe

The temporal lobe is located on the sides of our heads right under our temples – the parts where our skull fuses together. This part of the brain is great for processing auditory stimuli, sequencing, organization, and memory. You can find the Wernicke’s area in the temporal lobes so It also plays a huge role in understanding language too.

Internal Structures

Hypothalamus

This part of the brain runs us like a tyrannical 2 year old. It controls our autonomic systems and is responsible for the 4 f’s: fighting, fleeing, feeding, and fornication. So it plays a role in determining our body temperature, blood pressure, emotions, and sleep. The hypothalamus knows how to motivate us. When it wants something, it makes sure that we only care about that thing. That’s why it’s so difficult for most people to concentrate when they’re hungry – it’s because all we care about is the food! The hypothalamus is like our master orienting system. Whatever the hypothalamus wants, it gets. We can kind of regulate it with the cerebral cortex, but only to an extent. This is fantastic to know because there are learning techniques that take advantage of the hypothalamus’ behavior.

Pituitary Gland

This part of the brain hides in near the base of the skull in a place called the sella turcica. It’s connected to the hypothalamus, so you know it’s got some power. It controls the other endocrine (communication from far away) glands in the other parts of the body through hormone secretion that regulates sexual development, physical growth, and stress response.

Pineal Gland

This little guy is behind the third ventricle and regulates the body’s internal clock. This part of the brain controls the balance between melatonin and serotonin. The pineal gland is crucial to sleep, which is crucial for learning.

Basal Ganglia

Also known as the basal nuclei. This part of the brain works with the cerebellum to coordinate voluntary motor movements. It’s also involved in procedural and habit learning, eye movements, cognition, and emotions. So this is the part of the brain that we develop when we learn how to type, tie our shoes, ride a bike, or play a musical instrument. The basal ganglia recieves the information from the cerebellum to encode different skills, this is what people are referring to when they are talking about muscle memory.

Hippocampus

This is the part of the brain that’s responsible for information consolidation and spatial memory which helps us with navigation. Since I’m most interested about learning, I want to focus on the information consolidation feature of the hippocampus. The hippocampus moves our memories from our short term (working memory) to our long term memory. If someone were to damage their hippocampus they would experience anterograde amnesia, the inability to form new memories. If we think about what learning is, it’s really what the hippocampus is doing. It’s turning information that we know right now into information that we can have access to forever.

Amygdala

This almond-shaped clump of neurons is responsible for processing our emotions. The amygdala is associated with our fear response and pleasure. This is the part of the brain that goes crazy when some of my students see math problems. Understanding our fear and pleasure tendencies is crucial for understanding learning. Fear helps us remember things better and our seemingly endless pursuit of pleasure is a fantastic motivator.

Working Memory vs. Long Term Memory

Working Memory – this memory we use throughout the day is also known as short-term memory. Working memory has a finite limit. Holding things in your working memory increase cognitive load and since cognitive load has a maximum so does working memory. Things stored in working memory are easily forgotten. The prefrontal cortex is responsible for the working memory. It stores information for about one minute and its capacity is limited to about 7 items (plus or minus 2). This is why we’re able to dial a phone number someone just told us. You can see it in reading too! Our working memory memorizes the sentence we just read so that the next one can make sense.

Long Term Memory – this is memory that we use throughout our entire lives. Some items in our working memory are converted to long term memory in the hippocampus through various methods, the most common is sleep. Highly emotionally charged ideas, events, or memories have a fast pass ticket to our long term memory. We have virtually unlimited space and the items stored in long term memory are not easily forgotten.

The goal that we are most interested in, as far as learning is concerned, is moving as much information as possible to our long term memory and be able to retrieve it using as little cognitive load as possible.


Some basic knowledge of the brain can help tremendously when examining methods for learning and improving. Given that the brain is set up for survival in dangerous living conditions, we can develop techniques which take advantage of these mechanisms. If we don’t use something often then our minds tend to forget it because the brain thinks we don’t need that specific neural pathway to survive. Our brains have evolved for a very different environment than we have built for ourselves as modern people. If we use something often, then our brain will strengthen that pathway so it’s easier for us to use later. I talk about this in my other post Neural Pruning vs. Long-Term Potentiation. This is the basis of Active Recall and many of the other scientifically proven study techniques.

Studying the mind in tandem with the brain sets up a fantastic foundation to test out other learning techniques for yourself. The next post will focus more on the mind and how we can use that knowledge to maximize our learning.